4.5 Article

Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses

期刊

TREE GENETICS & GENOMES
卷 7, 期 6, 页码 1123-1134

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11295-011-0400-8

关键词

Plant-specific transfactors; Drought; Salt; Cold; Abscisic acid; Genome

资金

  1. Embrapa
  2. CNPq (Brasilia, Brazil)
  3. FAPESP (Sao Paulo, Brazil)
  4. FAPESB (Salvador, Brazil)
  5. CAPES (Brasilia, Brazil)

向作者/读者索取更多资源

The NAC (NAM, ATAF1, -2, and CUC2) gene family encodes a large family of plant-specific transcription factors that play diverse roles in plant development and stress regulation. In this study, we performed a survey of citrus NAC transcription factors in the HarvEST: Citrus database, in which 45 NAC domain-containing proteins were identified and phylogenetically classified into 13 different subfamilies. The results suggest the existence of a structurally diversified family of NAC transcription factors in citrus, which has not been previously characterized. One of these NAC genes, CsNAC1 was found to be a member of the stress-NAC subfamily, whose homologs from other plant species function in pathways of environmental stress response and tolerance, and was further characterized. The CsNAC1 deduced protein was shown to contain the five N-terminal A through E NAC subdomains, a C-terminal region containing three transcriptional activation motifs, and a predicted NAC nuclear localization signal, consistent with its putative role as a NAC transcription factor. In silico analysis indicated that CsNAC1 was primarily expressed in leaves and shoot meristems, and was involved in general stress responses. Quantitative real-time reverse transcription PCR analysis revealed that CsNAC1 was strongly induced by drought stress in leaves of Citrus reshni and Citrus limonia, and also by salt stress, cold, and ABA in leaves and roots of C. reshni. Collectively, these results suggest that CsNAC1 encodes a novel stress-responsive NAC transcription factor that is potentially useful for engineering tolerance to multiple abiotic stresses in citrus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据