4.4 Article

Traffic Signal Control with Connected Vehicles

期刊

TRANSPORTATION RESEARCH RECORD
卷 -, 期 2381, 页码 65-72

出版社

SAGE PUBLICATIONS INC
DOI: 10.3141/2381-08

关键词

-

向作者/读者索取更多资源

The operation of traffic signals is currently limited by the data available from traditional point sensors. Point detectors can provide only limited vehicle information at a fixed location. The most advanced adaptive control strategies are often not implemented in the field because of their operational complexity and high-resolution detection requirements. However, a new initiative known as connected vehicles allows the wireless transmission of the positions, headings, and speeds of vehicles for use by the traffic controller. A new traffic control algorithm, the predictive microscopic simulation algorithm, which uses these new, more robust data, was developed. The decentralized, fully adaptive traffic control algorithm uses a rolling-horizon strategy in which the phasing is chosen to optimize an objective function over a 15-s period in the future. The objective function uses either delay only or a combination of delay, stops, and decelerations. To measure the objective function, the algorithm uses a microscopic simulation driven by present vehicle positions, headings, and speeds. The algorithm is relatively simple, does not require point detectors or signal-to-signal communication, and is completely responsive to immediate vehicle demands. To ensure drivers' privacy, the algorithm does not store individual or aggregate vehicle locations. Results from a simulation showed that the algorithm maintained or improved performance compared with that of a state-of-the-practice coordinated actuated timing plan optimized by Synchro at low and midlevel volumes, but that performance worsened under saturated and oversaturated conditions. Testing also showed that the algorithm had improved performance during periods of unexpected high demand and the ability to respond automatically to year-to-year growth without retiming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据