4.6 Article

ZnO Superstructures as an Antifungal for Effective Control of Malassezia furfur, Dermatologically Prevalent Yeast: Prepared by Aloe Vera Assisted Combustion Method

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 3, 期 6, 页码 1066-1080

出版社

AMER CHEMICAL SOC
DOI: 10.1021/sc500784p

关键词

Zinc oxide superstructures; Green synthesis; Photoluminescence; Antidandruff; Antimalassezial activity

资金

  1. DST Nano Mission New Delhi [SR/NM/NS-48/2010]

向作者/读者索取更多资源

In this paper, a robust and simple biogenic route has been developed to synthesize self-assembled ZnO superstructures in short intervals of time using naturally available aloe vera plant gel and zinc nitrate as starting materials. The stabilization of zinc ions with polysaccharides wrapped chains along with the support of proteins, lipids and physterols of aloe vera gel followed by combustion derives the ZnO superstructures. The obtained ZnO superstructures show a hexagonal crystal phase and exhibit a semiconducting behavior with the energy band gap varies from 2.92 to 3.08 eV. The aloe vera gel derived ZnO superstructures exhibit unique and strong orange-red emission centered at 600 nm. The better structural, morphological and photoluminescence results are obtained for ZnO prepared with 16.6% W/V of zinc nitrate with aloe vera content compared to other concentrations of aloe vera. The prepared compounds are tested for antimalassezial activity against Malassezia furfur, dermatologically prevalent yeast, and were found to have minimum inhibitory concentration (MIC) values ranging from 8 to 125 mu g/mL. Fluorescence microscopic analysis revealed that yeast cells treated with ZnO superstructures have the chromatin as orange instead of green, showcasing the cell aggregation suggests that ZnO superstructures have an immense potential as an antifungal agent. Hence, the explored method of preparation shows high efficient ZnO superstructures derived from the aloe vera plant gel have potential applications in the medical, biomedical and cosmetic industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据