4.4 Article

Effects of Heterogeneity on Self-Organized Pedestrian Flows

期刊

TRANSPORTATION RESEARCH RECORD
卷 -, 期 2124, 页码 148-156

出版社

SAGE PUBLICATIONS INC
DOI: 10.3141/2124-14

关键词

-

向作者/读者索取更多资源

This investigation focuses on how the heterogeneity of pedestrian characteristics influences the buildup of congestion and affects the efficiency of pedestrian flows. Three commonly used parameters in pedestrian models-desired speed, body size, and reaction time-were varied in the population. Real pedestrian flows are heterogeneous regarding pedestrian characteristics. However, not much is known about the way that affects the qualities of the flow and how important it is to the outcomes of microsimulation models. The NOMAD model developed by Delft University of Technology is used to perform simulations in which the aforementioned heterogeneity is introduced. The investigation was carried out by creating bidirectional flows with fixed demands. The flows were analyzed by observing the development of breakdowns, average speeds, and average densities for different demands. It is shown that the influence of heterogeneity on breakdown probabilities and flow efficiency is considerable. To investigate this further, the dynamic lane formation process is investigated in detail. In addition to further insights into the causes for breakdown, it is found that the number of lanes increases with the decrease in heterogeneity in desired speed and in body size. However the opposite happens for heterogeneity in reaction time. Results indicate that heterogeneity in the population has a large impact on the flow quality and should be included in models explicitly to improve prediction performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据