4.4 Article

Bayesian Mixture Model for Estimating Freeway Travel Time Distributions from Small Probe Samples from Multiple Days

期刊

TRANSPORTATION RESEARCH RECORD
卷 -, 期 2136, 页码 37-44

出版社

SAGE PUBLICATIONS INC
DOI: 10.3141/2136-05

关键词

-

向作者/读者索取更多资源

This study formulates a hierarchical Bayesian mixture model for estimating travel time distributions along freeway sections by using small data samples from vehicle probes, which have been collected over multiple days. Two normal components are used to capture the heterogeneity in the experienced travel times and to model various distributional shapes generally known to be skewed or multimodal. Travel time data collected during different intervals under similar traffic conditions are used to construct the prior for model parameters via a hierarchical Bayesian formulation. The posterior distributions can be continuously updated as new data from probes become available, and are used for prediction under different levels of data availability. A simulation study shows that true travel time distribution for each section during each interval can be well-approximated with the use of this proposed model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据