4.7 Article

Bush-based sensitivity analysis for approximating subnetwork diversion

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trb.2011.09.004

关键词

Static traffic assignment; Subnetwork analysis; Equilibrium sensitivity analysis; Equilibrium bushes

向作者/读者索取更多资源

Subnetwork analysis is often used in traffic assignment problems to reduce the size of the network being analyzed, with a corresponding decrease in computation time. This is particularly important in network design, second-best pricing, or other bilevel problems in which many equilibrium runs must be solved as a subproblem to a master optimization program. A fixed trip table based on an equilibrium path flow solution is often used, but this ignores important attraction and diversion effects as drivers (globally) change routes in response to (local) subnetwork changes. This paper presents an approach for replacing a regional network with a smaller one, containing all of the subnetwork, and zones. Artificial arcs are created to represent all paths between each origin and subnetwork boundary node, under the assumption that the set of equilibrium routes does not change. The primary contribution of the paper is a procedure for estimating a cost function on these artificial arcs, using derivatives of the equilibrium travel times between the end nodes to create a Taylor series. A bush-based representation allows rapid calculation of these derivatives. Two methods for calculating these derivatives are presented, one based on network transformations and resembling techniques used in the analysis of resistive circuits, and another based on iterated solution of a nested set of linear equations. These methods are applied to two networks, one small and artificial, and the other a regional network representing the Austin, Texas metropolitan area. These demonstrations show substantial improvement in accuracy as compared to using a fixed table, and demonstrate the efficiency of the proposed approach. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据