4.2 Article

Downregulation of RhoA and changes in T cell cytoskeleton correlate with the abrogation of allograft rejection

期刊

TRANSPLANT IMMUNOLOGY
卷 23, 期 4, 页码 185-193

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.trim.2010.06.009

关键词

T cell; Actin; RhoA; Hip55

资金

  1. NIH [RO1 AI49945]

向作者/读者索取更多资源

Proper actin cytoskeleton architecture and dynamics are indispensable for events in the immunological response such as T cell migration, redistribution of T cell receptors, and interaction with antigen presenting cells. Thus, T cell activation, downstream signaling events and effector functions are all actin-dependent. Actin cytoskeleton architecture and dynamics are regulated by proteins belonging to the superfamily of small GTP-binding proteins, such as RhoA GTPase. We previously showed that the administration of an MHC class I allochimeric molecule [alpha 1h1/u]-RT1.Aa, which contains donor-type (Wistar Furth, WF; RT1u) immunogenic epitopes displayed on recipient-type (ACI, RT1a) sequences, to the ACI recipient of heterotopic WF heart resulted in the restriction of the TCR repertoire, inhibition of T cell infiltration into the heterotopic cardiac allografts, abrogation of acute and chronic rejection, and induction of indefinite survival of the allograft. Here we show that the allochimeric molecule treatment caused downregulation of RhoA GTPase in T cells. This resulted in dramatic changes in the distribution of actin and the actin-binding protein. Hip55, in these cells, which in turn, inhibited T cell infiltration into the graft. This indicates that the immunosuppressive activity of the allochimeric molecule is achieved via downregulation of the RhoA pathway and disruption of the proper organization of T cell actin cytoskeleton to inhibit T cell functions such as motility and/or TCR signaling events. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据