4.7 Article

Identification of candidate genes in scleroderma-related pulmonary arterial hypertension

期刊

TRANSLATIONAL RESEARCH
卷 151, 期 4, 页码 197-207

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.trsl.2007.12.010

关键词

-

资金

  1. NHLBI NIH HHS [P50 HL084946, P50 HL084946-01, P50 HL 084946] Funding Source: Medline

向作者/读者索取更多资源

We hypothesize that pulmonary arterial hypertension (PAH)-associated genes identified by expression profiling of peripheral blood mononuclear cells (PBMCs) from patients with idiopathic pulmonary arterial hypertension (IPAH) can also be identified in PBMCs from scleroderma patients with PAH (PAH-SSc). Gene expression profiles of PBMCs collected from I PAH (n = 9), PAH-SSc (n = 10) patients, and healthy controls (n = 5) were generated using HG_U133A_2.0 GeneChips and were processed by the RMA/GCOS_1.4/SAM_1.21 data analysis pipeline. Disease severity in consecutive patients was assessed by functional status and hemodynamic measurements. The expression profiles were analyzed using PAH severity-stratification, and identified candidate genes were validated with real-time polymerase chain reaction (PCR). Transcriptomics of PBMCs from IPAH patients was highly comparable with that of PMBCs from PAH-SSc patients. The PBMC gene expression patterns significantly correlate with right atrium pressure (RA) and cardiac index (0), which are known predictors of survival in PAH. Array stratification by RA and CI identified 364 PAH-associated candidate genes. Gene ontology (GO) analysis revealed significant (Z(score) > 1.96) alterations in angiogenesis genes according to PAH severity: matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor (VEGF) were significantly upregulated in mild as compared with severe PAH and healthy controls, as confirmed by real-time PCR. These data demonstrate that PBMCs from patients with PAH-SSc carry distinct transcriptional expression. Furthermore, our findings suggest an association between angiogenesis-related gene expression and severity of PAH in PAH-SSc patients. Deciphering the role of genes involved in vascular remodeling and PAH development may reveal new treatment targets for this devastating disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据