4.2 Article

Engineering broad-spectrum resistance against RNA viruses in potato

期刊

TRANSGENIC RESEARCH
卷 21, 期 2, 页码 303-311

出版社

SPRINGER
DOI: 10.1007/s11248-011-9533-7

关键词

PVX; PVY; PLRV; hp-RNA; Solanum tuberosum; Transgenic plants; Virus resistance

资金

  1. Pakistan Science Foundation
  2. Higher Education Commission of Pakistan

向作者/读者索取更多资源

RNA silencing technology has become the tool of choice for inducing resistance against viruses in plants. A significant discovery of this technology is that double-stranded RNA (dsRNA), which is diced into small interfering RNAs (siRNAs), is a potent trigger for RNA silencing. By exploiting this phenomenon in transgenic plants, it is possible to confer high level of virus resistance by specific targeting of cognate viral RNA. In order to maximize the efficiency and versatility of the vector-based siRNA approach, we have constructed a chimeric expression vector containing three partial gene sequences derived from the ORF2 gene of Potato virus X, Helper Component Protease gene of Potato virus Y and Coat protein gene of Potato leaf roll virus. Solanum tuberosum cv. Desiree and Kuroda were transformed with this chimeric gene cassette via Agrobacterium tumefaciens-mediated transformation and transgenic status was confirmed by PCR, Southern and double antibody sandwich ELISA detection. Due to simultaneous RNA silencing, as demonstrated by accumulation of specific siRNAs, the expression of partial triple-gene sequence cassette depicted 20% of the transgenic plants are immune against all three viruses. Thus, expression of a single transgene construct can effectively confer resistance to multiple viruses in transgenic plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据