4.2 Article

Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish

期刊

TRANSGENIC RESEARCH
卷 21, 期 3, 页码 457-469

出版社

SPRINGER
DOI: 10.1007/s11248-011-9546-2

关键词

Transgenic zebrafish; Growth hormone receptor; Insulin-like growth factor I; Suppressors of cytokine signaling; Hyperplasia; Skeletal muscle

资金

  1. Brazilian CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) [471437/2009-3]
  2. CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior)

向作者/读者索取更多资源

Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish () characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据