4.7 Article

Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory

期刊

REMOTE SENSING
卷 7, 期 6, 页码 7892-7913

出版社

MDPI
DOI: 10.3390/rs70607892

关键词

LiDAR; individual tree extraction; tree metrics estimation

资金

  1. Dallas Urban Forest Advisory Committee

向作者/读者索取更多资源

The objective of this study is to develop new algorithms for automated urban forest inventory at the individual tree level using LiDAR point cloud data. LiDAR data contain three-dimensional structure information that can be used to estimate tree height, base height, crown depth, and crown diameter. This allows precision urban forest inventory down to individual trees. Unlike most of the published algorithms that detect individual trees from a LiDAR-derived raster surface, we worked directly with the LiDAR point cloud data to separate individual trees and estimate tree metrics. Testing results in typical urban forests are encouraging. Future works will be oriented to synergize LiDAR data and optical imagery for urban tree characterization through data fusion techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据