4.2 Article

Microhemodynamic aberrations created by transfusion of stored blood

期刊

TRANSFUSION
卷 54, 期 4, 页码 1015-1027

出版社

WILEY
DOI: 10.1111/trf.12361

关键词

-

资金

  1. NIH [R01 HL52684, R01 HL064395, R01 HL062318]
  2. ARMY [W81XWH-11-2-0012]

向作者/读者索取更多资源

BackgroundHuman red blood cells (RBCs) can be stored for up to 42 days under controlled conditions. Physical and chemical changes occur during RBC storage, altering their function. This study links stored cell mechanical changes with hemodynamic functional alterations upon transfusion. Study Design and MethodsMechanical properties of fresh and stored RBCs were evaluated in vitro. Their transfusion effects were evaluated in vivo using intravital microscopy of the rat's cremaster muscle preparation. Rats were hemodiluted to 30% hematocrit, to mimic an anemic state before transfusion, and then exchange-transfused with fresh or stored cells. ResultsIn vitro studies on rheology and oxygen affinity of stored cells confirmed previously published results. Storage was found to modify static and dynamic RBC mechanic behavior. After transfusion, systemic hemodynamics were similar for fresh and stored cells; however, microvascular hemodynamics were drastically affected by stored cells. Stored cells reduced blood flow and oxygen delivery. Additionally, the presence of stored cells in circulation affected cell-to-cell and cell-to-wall interactions and affected cell hydrodynamics. Stored cells disrupted the RBC cell-free layer and wall shear stress signals. ConclusionThe reduced cell deformability due to RBC storage lesions caused pathologic changes in microvascular hemodynamics, endothelial cell mechanotransduction, and RBC dynamics. Thus, the mechanical changes of blood-banked cells can limit transfusion ability to achieve its intended goal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据