4.7 Article

Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data

期刊

REMOTE SENSING
卷 7, 期 7, 页码 8436-8452

出版社

MDPI
DOI: 10.3390/rs70708436

关键词

-

资金

  1. Free Inquiry/Young Talent program of the State Key Laboratory of Remote Sensing Science [14ZY-02]
  2. National Natural Science Foundation of China [41171307, 41421001]
  3. Key Programs of the Chinese Academy of Sciences [KZZD-EW-07, KZZD-EW-TZ-17]
  4. Non-profit Industry Financial Program of the Ministry of Water Resources [1261430110032]

向作者/读者索取更多资源

Spatially-detailed forest height data are useful to monitor local, regional and global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features but generating spatially-contiguous forest height maps at a large scale (e.g., continental and global) is problematic because existing LiDAR instruments are still data-limited and expensive. This paper proposes a new approach based on an artificial neural network (ANN) for modeling of forest canopy heights over the China continent. Our model ingests spaceborne LiDAR metrics and multiple geospatial predictors including climatic variables (temperature and precipitation), forest type, tree cover percent and land surface reflectance. The spaceborne LiDAR instrument used in the study is the Geoscience Laser Altimeter System (GLAS), which can provide within-footprint forest canopy heights. The ANN was trained with pairs between spatially discrete LiDAR metrics and full gridded geo-predictors. This generates valid conjugations to predict heights over the China continent. The ANN modeled heights were evaluated with three different reference data. First, field measured tree heights from three experiment sites were used to validate the ANN model predictions. The observed tree heights at the site-scale agreed well with the modeled forest heights (R = 0.827, and RMSE = 4.15 m). Second, spatially discrete GLAS observations and a continuous map from the interpolation of GLAS-derived tree heights were separately used to evaluate the ANN model. We obtained R of 0.725 and RMSE of 7.86 m and R of 0.759 and RMSE of 8.85 m, respectively. Further, inter-comparisons were also performed with two existing forest height maps. Our model granted a moderate agreement with the existing satellite-based forest height maps (R = 0.738, and RMSE = 7.65 m (R-2 = 0.52, and RMSE = 8.99 m). Our results showed that the ANN model developed in this paper is capable of estimating forest heights over the China continent with a satisfactory accuracy. Forth coming research on our model will focus on extending the model to the estimation of woody biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据