4.7 Article

Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF

期刊

REMOTE SENSING
卷 7, 期 6, 页码 6558-6575

出版社

MDPI AG
DOI: 10.3390/rs70606558

关键词

-

资金

  1. NSFC [91225302]
  2. Chinese Academy of Sciences Action Plan for West Development Program Project [KZCX2-XB3-15]
  3. National Science Foundation of China [41061038]

向作者/读者索取更多资源

In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM) images based on a 30 m digital elevation model (DEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products. Moreover, we define a normalized factor of a Bidirectional Reflectance Distribution Function (BRDF) to convert the sloping pixel reflectance into a flat pixel reflectance by using the Ross Thick-Li Sparse BRDF model (Ambrals algorithm) and MODIS BRDF/albedo kernel coefficient products. Sole atmospheric correction and topographic normalization were performed for TM images in the upper stream of the Heihe River Basin. The results show that using MODIS atmospheric products can effectively remove atmospheric effects compared with the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model and the Landsat Climate Data Record (CDR). Moreover, superior topographic effect removal can be achieved by considering the surface BRDF when compared with the surface Lambertian assumption of topographic normalization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据