4.2 Article

New low-frequency platelet glycoprotein polymorphisms associated with neonatal alloimmune thrombocytopenia

期刊

TRANSFUSION
卷 50, 期 2, 页码 324-333

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1537-2995.2009.02438.x

关键词

-

资金

  1. National Heart, Lung, and Blood Institute [HL-13629, HL-79085]

向作者/读者索取更多资源

BACKGROUND: Recent reports suggest that maternal immunization against low-frequency, platelet (PLT)-specific glycoprotein (GP) polymorphisms is a more common cause of neonatal alloimmune thrombocytopenia (NATP) than previously thought. STUDY DESIGN AND METHODS: Serologic and molecular studies were performed on PLTs and DNA from three families in which an infant was born with apparent NATP not attributable to maternal immunization against known PLT-specific alloantigens. RESULTS: Antibodies reactive only with paternal PLTs were identified in each mother. In Cases 2 (Kno) and 3 (Nos), but not Case 1 (Sta), antibody recognized paternal GPIIb/IIIa in solid-phase assays. Unique mutations encoding amino acid substitutions in GPIIb (Case 2) or GPIIIa (Cases 1 and 3) were identified in paternal DNA and in DNA from two of the affected infants. Antibody from all three cases recognized recombinant GPIIIa (Case 1 [Sta] and Case 3 [Nos]) and GPIIb (Case 2, Kno) mutated to contain the polymorphisms identified in the respective fathers. None of 100 unselected normal subjects possessed the paternal mutations. Enzyme-linked immunosorbent assay and flow cytometric studies suggested that failure of maternal serum from Case 1 (Sta) to react with paternal GPIIIa in solid-phase assays resulted from use of a monoclonal antibody AP2, for antigen immobilization that competed with the maternal antibody for binding to the Sta epitope. CONCLUSION: NATP in the three cases was caused by maternal immunization against previously unreported, low-frequency GP polymorphisms. Maternal immunization against low-frequency PLT-specific alloantigens should be considered in cases of apparent NATP not resolved by conventional serologic and molecular testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据