4.2 Article

OPTIMAL DESIGN OF DAMPED DYNAMIC VIBRATION ABSORBER FOR DAMPED PRIMARY SYSTEMS

出版社

CSME TRANS.
DOI: 10.1139/tcsme-2010-0008

关键词

-

向作者/读者索取更多资源

This study focuses on the optimum design of the damped dynamic vibration absorber (DVA) for damped primary systems. Different from the conventional way, the DVA damper is connected between the absorber mass and the ground. Two numerical approaches are employed. The first approach solves a set of nonlinear equations established by the Chebyshev's equioscillation theorem. The second approach minimizes a compound objective subject to a set of the constraints. First the two methods are applied to classical systems and the results are compared with those from the analytical solutions. Then the modified Chebyshev's equioscillation theorem method is applied to find the optimum damped DVAs for the damped primary system. Various results are obtained and analyzed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据