4.7 Article

Geometric Constraints Dominate the Antigenic Evolution of Influenza H3N2 Hemagglutinin

期刊

PLOS PATHOGENS
卷 11, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1004940

关键词

-

资金

  1. National Institutes of Health [R01 GM088344]
  2. Army Research Office [W911NF-12-1-0390]
  3. Defense Threat Reduction Agency [HDTRA1-12-C-0007]
  4. National Science Foundation [DBI-0939454]

向作者/读者索取更多资源

We have carried out a comprehensive analysis of the determinants of human influenza A H3 hemagglutinin evolution. We consider three distinct predictors of evolutionary variation at individual sites: solvent accessibility (as a proxy for protein fold stability and/or conservation), Immune Epitope Database (IEDB) epitope sites (as a proxy for host immune bias), and proximity to the receptor-binding region (as a proxy for one of the functions of hemagglutinin-to bind sialic acid). Individually, these quantities explain approximately 15% of the variation in site-wise dN/dS. In combination, solvent accessibility and proximity explain 32% of the variation in dN/dS; incorporating IEDB epitope sites into the model adds only an additional 2 percentage points. Thus, while solvent accessibility and proximity perform largely as independent predictors of evolutionary variation, they each overlap with the epitope-sites predictor. Furthermore, we find that the historical H3 epitope sites, which date back to the 1980s and 1990s, only partially overlap with the experimental sites from the IEDB, and display similar overlap in predictive power when combined with solvent accessibility and proximity. We also find that sites with dN/dS > 1, i.e., the sites most likely driving seasonal immune escape, are not correctly predicted by either historical or IEDB epitope sites, but only by proximity to the receptor-binding region. In summary, a simple geometric model of HA evolution outperforms a model based on epitope sites. These results suggest that either the available epitope sites do not accurately represent the true influenza antigenic sites or that host immune bias may be less important for influenza evolution than commonly thought.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据