4.4 Review

Proteomic Analysis of Clathrin Interactions in Trypanosomes Reveals Dynamic Evolution of Endocytosis

期刊

TRAFFIC
卷 14, 期 4, 页码 440-457

出版社

WILEY
DOI: 10.1111/tra.12040

关键词

clathrin; endocytosis; intracellular transport; LECA; molecular evolution; protein interaction networks; trypanosoma

资金

  1. Wellcome Trust [082813]
  2. MRC
  3. Cambridge Commonwealth Trust

向作者/读者索取更多资源

Endocytosis is a vital cellular process maintaining the cell surface, modulating signal transduction and facilitating nutrient acquisition. In metazoa, multiple endocytic modes are recognized, but for many unicellular organisms the process is likely dominated by the ancient clathrin-mediated pathway. The endocytic system of the highly divergent trypanosomatid Trypanosoma brucei exhibits many unusual features, including a restricted site of internalization, dominance of the plasma membrane by GPI-anchored proteins, absence of the AP2 complex and an exceptionally high rate. Here we asked if the proteins subtending clathrin trafficking in trypanosomes are exclusively related to those of higher eukaryotes or if novel, potentially taxon-specific proteins operate. Co-immunoprecipitation identified twelve T. brucei clathrin-associating proteins (TbCAPs), which partially colocalized with clathrin. Critically, eight TbCAPs are restricted to trypanosomatid genomes and all of these are required for robust cell proliferation. A subset, TbCAP100, TbCAP116, TbCAP161 and TbCAP334, were implicated in distinct endocytic steps by detailed analysis of knockdown cells. Coupled with the absence of orthologs for many metazoan and fungal endocytic factors, these data suggest that clathrin interactions in trypanosomes are highly lineage-specific, and indicate substantial evolutionary diversity within clathrin-mediated endocytosis mechanisms across the eukaryotes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据