4.4 Article

TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent

期刊

TRAFFIC
卷 9, 期 7, 页码 1146-1156

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1600-0854.2008.00751.x

关键词

degradation; DUBs; internalization; lysosomes; proteasome; TrkA; ubiquitin

资金

  1. PHS HHS [NINDS 33661] Funding Source: Medline

向作者/读者索取更多资源

Gaps in our knowledge exist regarding the degradation of the tropomyosin-regulated kinase A (TrkA) receptor after addition of neurotrophin, nerve growth factor (NGF). TrkA is rapidly and transiently ubiquitinated upon addition of NGF. Here, we demonstrate that the polyubiquitin tag plays a definitive role in receptor sorting. Treatment of PC12 cells with lactacystin prevented NGF-dependent deubiquitination and degradation of TrkA. However, treatment with methylamine, bafilomycin or leupeptin, did not prevent NGF-dependent deubiquitination but blocked the degradation of TrkA. Employing co-immunoprecipitation, biochemical fractionation and confocal microscopy, the kinetics of receptor trafficking post-internalization was observed to occur as a sequel from endosome/multivesicular body, proteasomes, culminating with degradation in the lysosomes. The trafficking of the polyubiquitin-deficient TrkA receptor mutant K485R was impaired and likewise failed to degrade revealing that the receptor escapes degradation. The interaction of TrkA with proteasomes was confirmed by purification and co-immunoprecipitation. We provide evidence that proteasomal deubiquitinating enzymes trim K63-ubiquitin chains from the TrkA receptor prior to its delivery to lysosomes for degradation. Taken together, our results reveal the existence of a novel proteasome-dependent step in receptor degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据