4.2 Article

Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response

期刊

TOXICOLOGY MECHANISMS AND METHODS
卷 23, 期 8, 页码 598-609

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/15376516.2013.811568

关键词

Alveolar epithelial cells; gene expression profiles; oxidative stress; reactive oxygen species; single-wall carbon nanotube

资金

  1. New Energy and Industrial Technology Development Organization of Japan (NEDO) [P10024]

向作者/读者索取更多资源

Concern over the influence of carbon nanotubes (CNTs) on human health has arisen due to advances; however, little is known about the potential toxicity of CNTs. In this study, impurity-free single-wall carbon nanotubes (SWCNTs), with different physical properties in cell culture medium, were prepared by a novel dispersion procedure. SWCNTs with small bundles (short linear shape) and SWCNTs with large bundles (long linear shape) did not cause a significant inhibition of cell proliferation, induction of apoptosis or arrest of cell cycle progression in A549 alveolar epithelial cells. Expression of many genes involved in the inflammatory response, apoptosis, response to oxidative stress and degradation of the extracellular matrix were not markedly upregulated or downregulated. However, SWCNTs with relatively large bundles significantly increased the level of intracellular reactive oxygen species (ROS) in a dose-dependent manner, and the levels of these ROS were higher than those of SWCNTs with relatively small bundles or commercial SWCNTs with residual metals. Transmission electron microscopy (TEM) revealed that impurity-free SWCNTs were observed in the cytoplasm and vacuoles of cells after 24 h. These results suggested that the physical properties, especially the size and length of the bundles of the SWCNTs dispersed in cell culture medium, contributed to a change in intracellular ROS generation, even for the same bulk SWCNTs. Additionally, the residual metals associated with the manufacturing of SWCNTs may not be a definitive parameter for intracellular ROS generation in A549 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据