4.2 Article

Acute kidney injury and the potential for ATF3-regulated epigenetic therapy

期刊

TOXICOLOGY MECHANISMS AND METHODS
卷 21, 期 4, 页码 362-366

出版社

INFORMA HEALTHCARE
DOI: 10.3109/15376516.2011.557876

关键词

Epigenetic therapy; kidney injury; ATF3; deacetylation

向作者/读者索取更多资源

The incidence of mortality in acute renal failure (ARF) induced by ischemia-reperfusion (I/R) injury or septic shock is high. Previous studies using animal models of ARF reported that inflammation-induced macrophage recruitment in endothelial cells, along with I/R-induced production of inflammatory cytokines and chemokines in tubule epithelial cells, results in macrophage and neutrophil accumulation, and that both ultimately lead to irreversible kidney injury. Recent studies suggest that ARF may also induce a beneficial stress response program and express many transcriptional regulators, including activating transcription factor 3 (ATF3). ATF3 is a member of the ATF/CREB subfamily of the basic-region leucine zipper (bZIP) family. Recent research has shed new light on the protective role of the ATF3 signaling pathway in attenuating inflammation and I/R-induced tubular cell death and nephrotoxicity. A recent clinical study also reported that ATF3 can serve as an indicator of acute kidney injury (AKI). AKI is associated with a robust inflammatory effect with increased levels of cytokines, including IL-6, IL-12, and IFN gamma. By inhibiting these cytokines, the ATF3 molecule may hold the potential to provide future epigenetic therapy against inflammation-induced renal injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据