4.5 Article

Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1

期刊

TOXICOLOGY LETTERS
卷 222, 期 1, 页码 55-63

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2013.07.011

关键词

Genotoxicity; Cytotoxicity; Silver nanoparticle; DNA adduct; 8-oxodG; Micronucleus assay

资金

  1. Danish Council for Strategic Research [09-067185]
  2. Ministry of Science and Technology of China [2011CB933401]

向作者/读者索取更多资源

Investigation of the genotoxic potential of nanomaterials is essential to evaluate if they pose a cancer risk for exposed workers and consumers. The Chinese hamster ovary cell line CHO-K1 is recommended by the OECD for use in the micronucleus assay and is commonly used for genotoxicity testing. However, studies investigating if this cell line is suitable for the genotoxic evaluation of nanomaterials, including induction of DNA adduct and micronuclei formation, are rare and for silver nanoparticles (Ag NPs) missing. Therefore, we here systematically investigated DNA and chromosomal damage induced by BSA coated Ag NPs (15.9 +/- 7.6 nm) in CHO-K1 cells in relation to cellular uptake and intracellular localization, their effects on mitochondrial activity and production of reactive oxygen species (ROS), cell cycle, apoptosis and necrosis. Ag NPs are taken up by CHO-Kl cells and are presumably translocated into endosomes/lysosomes. Our cytotoxicity studies demonstrated a concentration-dependent decrease of mitochondrial activity and increase of intracellular reactive oxygen species (ROS) in CHO-Kl cells following exposure to Ag NPs and Ag+ (0-20 mu g/ml) for 24h. Annexin V/propidium iodide assay showed that Ag NPs and Ag+ induced apoptosis and necrosis, which is in agreement with an increased fraction of cells in subG1 phase of the cell cycle. Genotoxicity studies showed that Ag NPs but also silver ions (Ag+) induced bulky-DNA adducts, 8-oxodG and micronuclei formation in a concentration-dependent manner, however, there were quantitative and qualitative differences between the particulate and ionic form of silver. Taken together, our multi-platform genotoxicity and cytotoxicity analysis demonstrates that CHO-Kl cells are suitable for the investigation of genotoxicity of nanoparticles like Ag NPs. 2013 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据