4.5 Article

Prooxidative toxicity and selenoprotein suppression by cerivastatin in muscle cells

期刊

TOXICOLOGY LETTERS
卷 215, 期 3, 页码 219-227

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2012.10.010

关键词

HMG-CoA reductase; Mevalonate pathway; Myopathy; Oxidative stress; Selenoproteins; Statins

资金

  1. Peter-und-Beate-Heller-Stiftung
  2. Forschungsfonds der Universitat Mainz

向作者/读者索取更多资源

Statins are the most widely used drugs for the treatment of hypercholesterolemia. In spite of their overall favorable safety profile, they do possess serious myotoxic potential, whose molecular origin has remained equivocal. Here, we demonstrate in cultivated myoblasts and skeletal muscle cells that cerivastatin at nanomolar concentrations interferes with selenoprotein synthesis and evokes a heightened vulnerability of the cells toward oxidative stressors. A correspondingly increased vulnerability was found with atorvastatin, albeit at higher concentrations than with cerivastatin. In selenium-saturated cells, cerivastatin caused a largely indiscriminate suppression of selenoprotein biosynthesis and reduced the steady state-levels of glutathione peroxidase 1 (GPx1) and selenoprotein N (SelN). Selenite, ebselen, and ubiquinone were unable to prevent the devitalizing effect of statin treatment, despite the fact that the cellular baseline resistance against tert-butyl hydroperoxide was significantly increased by picomolar sodium selenite. Mevalonic acid, in contrast, entirely prevented the statin-induced decrease in peroxide resistance. These results indicate that muscle cells may be particularly susceptible to a statin-induced suppression of essential antioxidant selenoproteins, which provides an explanation for the disposition of these drugs to evoke adverse muscular side-effects. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据