4.5 Article

Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes

期刊

TOXICOLOGY LETTERS
卷 202, 期 1, 页码 47-54

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2011.01.019

关键词

Aconitine; Cytochrome P450; Metabolism; Microsomes; LC-MS/MS

资金

  1. National Basic Research Program of China [2009CB5228008]
  2. National Natural Science Foundation of China [81001690, U0832002]

向作者/读者索取更多资源

Aconitine (AC), a famous major Aconitum alkaloid, has effective antitheumatic function with high toxicity. The aim of our study was to in-depth investigate cytochrome P450 isozymes (CYPs) involved in aconitine metabolism in vitro. We used human liver microsomes (HLMs) as well as recombinant CYPs to investigate the metabolism pathways of aconitine by liquid chromatography-tandem mass spectrometry. Fluvoxamine maleate, gemfibrozil, amiodarone hydrochloride, omeprazole, quinidine, diethyldithiocarbamic acid and ketoconazole were successfully applied as test inhibitors for CYP1A2, CYP2C8, CYP2C9, CYP2C19*1, CYP2D6*1, CYP2E1 and CYP3A4/5 in HLMs, respectively. Six CYP-mediated metabolites were found and characterized in human liver microsomes and eight recombinant CYP isoforms. The inhibitor of CYP 3A had a strong inhibitory effect, the inhibitors of CYP 2C9, 2C8 and CYP2D6 had little inhibitory effects, whereas CYP2C19, 1A2 and 2E1 had no obvious inhibitory effects on AC metabolism. Hydroxylation and di-demethylation of aconitine were conducted by human recombinant CYP 3A5 and 2D6, dehydrogenation was only processed by CYP3A4/5, and the main CYP isoforms metabolizing aconitine to demethyl-aconitine and N-deethyl-aconitine were CYP3A4/5 and CYP2D6. In conclusion, aconitine can be transformed into at least six CYP-mediated metabolites in HLMs, CYP 3A4/5 and 2D6 were the most important CYP isoforms responsible for the de-methylation, N-deethylation, dehydrogenation, and hydroxylation of aconitine. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据