4.5 Article

Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis

期刊

TOXICOLOGY LETTERS
卷 203, 期 2, 页码 162-171

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2011.03.021

关键词

Iron oxide nanoparticle; Human aortic endothelial cells; Atheroscelerosis; Endothelial dysfunction; Human monocyte

资金

  1. National Basic Research Program of China [2011CB933400]
  2. Chinese Academy of Sciences [KJCX3.SYW.N3]
  3. National Natural Science Foundation of China [10975148, 10905064]

向作者/读者索取更多资源

More recently, the correlation between exposure to nanoparticles and cardiovascular diseases is of particular concern in nanotoxicology related fields. Nanoparticle-triggered endothelial dysfunction is hypothesized to be a dominant mechanism in the development of the diseases. To test this hypothesis. iron oxide nanoparticles (Fe2O3 and Fe3O4), as two widely used nanomaterials and the main metallic components in particulate matter, were selected to assess their potential risks on human endothelial system. The direct effects of iron oxide nanoparticles on human aortic endothelial cells (HAECs) and the possible effects mediated by monocyte (U937 cells) phagocytosis and activation were investigated. In the study, HAECs and U937 cells were exposed to 2, 20, 100 mu g/mL of 22-nm-Fe2O3 and 43-nm-Fe3O4 particles. Our results indicate that cytoplasmic vacuolation, mitochondrial swelling and cell death were induced in HAEC. A significant increase in nitric oxide (NO) production was induced which coincided with the elevation of nitric oxide synthase (NOS) activity in HAECs. Adhesion of monocytes to the HAECs was significantly enhanced as a consequence of the up-regulation of intracellular cell adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression, all of which are considered as early steps of atheroscelerosis. Phagocytosis and dissolution of nanoparticles by monocytes were found to simultaneously provoke oxidative stress and mediate severe endothelial toxicity. We conclude that intravascular iron oxide nanoparticles may induce endothelial system inflammation and dysfunction by three ways: (1) nanoparticles may escape from phagocytosis that interact directly with the endothelial monolayer; (2) nanoparticles are phagocytized by monocytes and then dissolved, thus impact the endothelial cells as free iron ions; or (3) nanoparticles are phagocytized by monocytes to provoke oxidative stress responses. (C) 2011 Published by Elsevier Ireland Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据