4.5 Article

Furazolidone induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in human hepatoma G2 cells

期刊

TOXICOLOGY LETTERS
卷 201, 期 3, 页码 205-212

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2010.12.021

关键词

Furazolidone; ROS; Oxidative DNA damage; Cell cycle arrest; Mitochondrial DNA; HepG2 cells

资金

  1. Program for Cheung Kong Scholars
  2. Innovative Research Team at the University of China [IRT0866]

向作者/读者索取更多资源

Furazolidone (FZD) is an antimicrobial agent that has been shown to have mutagenic, genotoxic and potentially carcinogenic properties when tested in a variety of systems in vitro and in vivo. In this study, we investigated FZD's DNA damaging effect in human hepatoma cells aiming at further defining the molecular mechanism of FZD's cytotoxicity. Addition of FZD resulted in cell growth suppression and cell cycle arrest in S phase accompanied by remarkable DNA strand breaks with increased levels of intracellular reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine. Activities of antioxidases were down-regulated following FZD treatment and antioxidant agent catalase and superoxide dismutase ameliorated FZD's DNA damaging effects. Moreover, FZD caused much more extensive damage to mitochondria( DNA (mtDNA) than to nuclear DNA for which the decrease in mtDNA content correlated with FZD usage in a dose-dependent manner. However, there was no evidence of FZD induced mtDNA mutation in the mitochondrial DNA displacement loop. These results demonstrate that FZD up-regulates the production of intracellular ROS to cause oxidative DNA damage with mtDNA being the most vulnerable targets. Oxidative stress and the injury of mtDNA could be early indicators of FZD-induced cytotoxicity, with the resulting abnormal progression of the cell cycle. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据