4.5 Article

Methylmercury chloride induces alveolar type II epithelial cell damage through an oxidative stress-related mitochondrial cell death pathway

期刊

TOXICOLOGY LETTERS
卷 194, 期 3, 页码 70-78

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2010.02.003

关键词

Methylmercury; Alveolar type II epithelial cell; Oxidative stress; Cell death; Surfactant proteins (SPs) mRNA

资金

  1. National Science Council of Taiwan [NSC 98-2815-C-039-032-B]
  2. China Medical University [CMU 97-293]
  3. China Medical University Hospital, Taichung, Taiwan [DMR-99-165]

向作者/读者索取更多资源

Mercury, one of the widespread pollutants in the world, induces oxidative stress and dysfunction in many cell types. Alveolar type II epithelial cells are known to be vulnerable to oxidative stress. Alveolar type II epithelial cells produce and secrete surfactants to maintain morphological organization, biophysical functions, biochemical composition, and immunity in lung tissues. However, the precise action and mechanism of mercury on alveolar type II epithelial cell damage remains unclear. In this study, we investigate the effect and possible mechanism of methylmercury chloride (MeHgCl) on the human lung invasive carcinoma cell line (Cl1-0) and mouse lung tissue. Cl1-0 cells were exposed to MeHgCl (2.5-10 p.,M) for 24-72 h. The results showed a decrease in cell viability and an increase in malondialdehyde (MDA) level and ROS production at 72 h after MeHgCl exposure in a dose-dependent manner. Caspase-3 activity, sub-G1 contents and annexin-V binding were dramatically enhanced in Cl1-0 cells treated with MeHgCl. MeHgCl could also activate Bax, release cytochrome c, and cleave poly(ADP-Ribose) polymerase (PARP), and decrease surfactant proteins mRNA levels. Moreover, in vivo study showed that mercury contents of blood and lung tissues were significantly increased after MeHgCl treatment in mice. The MDA levels in plasma and lung tissues were also dramatically raised after MeHgCl treatment. Lung tissue sections of MeHgCl-treated mice showed pathological fibrosis as compared with vehicle control. The mRNA levels of proteins in apoptotic signaling, including p53, mdm-2, Bax, Bad, and caspase-3 were increased in mice after exposure to MeHgCl. In addition, the mRNA levels of surfactant proteins (SPs), namely, SP-A, SP-B, SP-C, and SP-D (alveolar epithelial cell functional markers) were significantly decreased. These results suggest that MeHgCl activates an oxidative stress-induced mitochondrial cell death in alveolar epithelial cells. Crown Copyright (C) 2010 Published by Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据