4.5 Article

Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro

期刊

TOXICOLOGY LETTERS
卷 184, 期 1, 页码 18-25

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2008.10.012

关键词

Silica nanoparticles; Oxidative stress; Inflammation; Cytokines

向作者/读者索取更多资源

Oxidative stress and inflammatory responses induced by silica nanoparticles were evaluated both in mice and in RAW264.7 cell line. Single treatment of silica nanoparticles (50 mg/kg, i.p.) led to the activation of peritoneal macrophages, the increased blood level of IL-1 beta and TNF-alpha, and the increased level of nitric oxide released from the peritoneal macrophages. mRNA expressions of inflammation-related genes such as IL-1, IL-6,TNF-alpha, iNOS, and COX-2 were also elevated in the cultured peritoneal macrophages harvested from the treated mice. When the viability of splenocytes from the mice treated with silica nanoparticles (50 mg/kg, 100 mg/kg and 250 mg/kg i.p.) was measured, the viability of splenocytes was significantly decreased in the higher dose-treated groups (100 mg/kg, 200 mg/kg i.p.). However, cell proliferation without cytotoxicity was shown in group treated with relatively low dose of 50 mg/kg i.p. When leukocyte subtypes of mouse spleen were evaluated using flow cytometry analysis, it was found that the distributions of NK cells and T cells were increased to 184.8% and 115.1% of control, respectively, while that of B cells was decreased to 87.7%. To elucidate the pro-inflammatory mechanism of silica nanoparticles in vivo, in vitro study using RAW264.7 cell line which is derived from mouse peritoneal macrophage was done. Treatment of silica nanoparticles to the cultured RAW264.7 cells led to the reactive oxygen species (ROS) generation with a decreased intracellular GSH. In accordance with ROS generation, silica nanoparticles increased the level of nitric oxide released from the cultured macrophage cell line. These results suggested that silica nanoparticles generate ROS and the generated ROS may trigger the pro-inflammatory responses both in vivo and in vitro. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据