4.5 Article

Microsomal oxidative damage promoted by acetaminophen metabolism

期刊

TOXICOLOGY IN VITRO
卷 25, 期 7, 页码 1310-1313

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2011.04.022

关键词

Acetaminophen; Biotransformation; Microsomes; ROS; Oxidative stress

向作者/读者索取更多资源

Adverse reactions of acetaminophen have been associated to oxidative stress, which may be elicited by reactive oxygen species (ROS) and/or production of the metabolite NAPQI. Both phenomena would arise through the activity of liver cytochrome P450 (CYP450) system, but their contribution to this oxidative stress is yet to be clarified. A NADPH oxidase activity has been proposed in rat liver microsomes. This activity may be due to the presence of NAD(P)H oxidase (NOX) isoforms in liver endoplasmic reticulum. Both NOX and the CYP450 system activities can catalyze ROS generation using NADPH as a cofactor. Therefore, acetaminophen biotransformation, which requires NADPH, may promote ROS generation through either activity or both. To discriminate between these possibilities, rat liver microsomes were incubated with acetaminophen and NADPH in the presence or absence of specific inhibitors. Incubation with NADPH and acetaminophen elicited lipid peroxidation and decreased thiol content and glutathione-S-transferase (GST) activity. The NOX inhibitors apocynin and plumbagin prevented all these phenomena but the decrease in thiol content. In contrast, this decrease was completely prevented by the specific CYP450 system inhibitor SKF-525A. These data suggest that ROS generation following incubation of microsomes with acetaminophen and NADPH appears to be mainly caused by a NOX activity. In light of these data, toxicity of acetaminophen is discussed. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据