4.6 Article

The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in Bacillus subtilis

期刊

PLOS GENETICS
卷 11, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1005275

关键词

-

资金

  1. NIH [GM81368, GM114213, GM008224-22]
  2. Burroughs-Welcome Fund Investigator in Pathogenesis of Infectious Disease

向作者/读者索取更多资源

Most bacteria contain both eukaryotic-like Ser/Thr kinases (eSTKs) and eukaryotic-like Ser/Thr phosphatases (eSTPs). Their role in bacterial physiology is not currently well understood in large part because the conditions where the eSTKs are active are generally not known. However, all sequenced Gram-positive bacteria have a highly conserved eSTK with extracellular PASTA repeats that bind cell wall derived muropeptides. Here, we report that in the Gram-positive bacterium Bacillus subtilis, the PASTA-containing eSTK PrkC and its cognate eSTP PrpC converge with the essential WalRK two-component system to regulate WalR regulon genes involved in cell wall metabolism. By continuously monitoring gene expression throughout growth, we consistently find a large PrkC-dependent effect on expression of several different WalR regulon genes in early stationary phase, including both those that are activated by WalR (yocH) as well as those that are repressed (iseA, pdaC). We demonstrate that PrkC phosphorylates WalR in vitro and in vivo on a single Thr residue located in the receiver domain. Although the phosphorylated region of the receiver domain is highly conserved among several B. subtilis response regulators, PrkC displays specificity for WalR in vitro. Consistently, strains expressing a nonphosphorylatable WalR point mutant strongly reduce both PrkC dependent activation and repression of yocH, iseA, and pdaC. This suggests a model where the eSTK PrkC regulates the essential WalRK two-component signaling system by direct phosphorylation of WalR Thr101, resulting in the regulation of WalR regulon genes involved in cell wall metabolism in stationary phase. As both the eSTK PrkC and the essential WalRK two-component system are highly conserved in Gram-positive bacteria, these results may be applicable to further understanding the role of eSTKs in Gram-positive physiology and cell wall metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据