4.5 Article Proceedings Paper

Toxicity assessment of the herbicide metolachlor comparative effects on bacterial and mitochondrial model systems

期刊

TOXICOLOGY IN VITRO
卷 23, 期 8, 页码 1585-1590

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2009.06.032

关键词

Herbicides; Metolachlor; Mitochondria; Bacillus stearothermophilus; Toxicity assessment

向作者/读者索取更多资源

Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B. stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 mu mol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据