4.6 Article

Methionine Mistranslation Bypasses the Restraint of the Genetic Code to Generate Mutant Proteins with Distinct Activities

期刊

PLOS GENETICS
卷 11, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1005745

关键词

-

资金

  1. NIH [DP1GM105386]

向作者/读者索取更多资源

Although mistranslation is commonly believed to be deleterious, recent evidence indicates that mistranslation can be actively regulated and be beneficial in stress response. Methionine mistranslation in mammalian cells is regulated by reactive oxygen species where cells deliberately alter the proteome through incorporating Met at non-Met positions to enhance oxidative stress response. However, it was not known whether specific, mistranslated mutant proteins have distinct activities from the wild-type protein whose sequence is restrained by the genetic code. Here, we show that Met mistranslation with and without Ca2+ overload generates specific mutant Ca2+/calmodulin-dependent protein kinase II (CaMKII) proteins substituting non-Met with Met at multiple locations. Compared to the genetically encoded wild-type CaMKII, specific mutant CaMKIIs can have distinct activation profiles, intracellular localization and enhanced phenotypes. Our results demonstrate that Met-mistranslation, or Met-scan can indeed generate mutant proteins in cells that expand the activity profile of the wild-type protein, and provide a molecular mechanism for the role of regulated mistranslation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据