4.7 Article

Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes

期刊

TOXICOLOGY
卷 323, 期 -, 页码 32-41

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2014.06.005

关键词

Ultrafine carbon black; Ultrafine particles; Glutamate; ATP; Hemichannel; Neurotoxicity

资金

  1. National High Technology Research and Development Program of China [2012AA062804]
  2. National Natural Science Foundation of China [21077006]

向作者/读者索取更多资源

Ultrafine particles could enter central nervous system and were associated with brain damage. The underlying mechanisms have not been fully elucidated. Glutamate and ATP are important signaling molecules in brain physiology and pathology. We investigated whether ultrafine carbon black (ufCB) could regulate the release of glutamate and ATP from cultured cortical astrocytes and the involvement of hemichannels in the release mechanism. Our results showed that ufCB dose-dependently increased glutamate and ATP release and activated hemichannels in astrocytes. ufCB-activated hemichannels were attributed to the activation of both connexin 43 (Cx43) and pannexin1 (Panx1) hemichannels, which was based on the finding of increased protein expression and distribution on cell surface of Cx43 and Panx1, and the inhibiting effects of hemichannel inhibitor carbenoxolone, Cx43 hemichannel inhibitor (43)Gap27 and Panx1 hemichannel inhibitor (10)Panx1 on hemichannel activation. Furthermore, ufCB-induced glutamate and ATP release were dependent on Cx43 and Panx1 hemichannels, because carbenoxolone and (43)Gap27 inhibited ufCB-induced glutamate and ATP release, and (10)Panx1 inhibited ufCB-induced ATP release. Taken together, we demonstrated, for the first time, that ufCB could induce glutamate and ATP release by activating Cx43 and Panx1 hemchannels in astrocytes. Our findings suggest a novel mechanism for neurotoxicity caused by ultrafine particles. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据