4.7 Article

Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis

期刊

TOXICOLOGY
卷 311, 期 3, 页码 216-224

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2013.07.003

关键词

Citrinin; Cell proliferation; In vivo genotoxicity; Renal carcinogenesis

资金

  1. Grants-in-Aid for Scientific Research [22241016] Funding Source: KAKEN

向作者/读者索取更多资源

Citrinin (CTN) is a food-contaminating mycotoxin that efficiently induces renal tumors in rats. However, the modes of carcinogenic action are still unknown, preventing assessment of the risks of CTN in humans. In the present study, the proliferative effects of CTN and its causal factors were investigated in the kidneys of gpt delta rats. In addition, three in vivo genotoxicity assays (reporter gene mutation using gpt delta rats and comet and micronucleus assays using F344 rats) were performed to clarify whether CTN was genotoxic in vivo. CTN was administrated at 20 and 40 mg/kg/day, the higher dose being the maximal tolerated dose and a nearly carcinogenic dose. In the kidney cortex of gpt delta rats, significant increases in the labeling indices of proliferating cell nuclear antigen (PCNA)-positive cells were observed at all doses of CTN. Increases in the mRNA expression levels of Ccna2, Ccn61, Ccne1, and its transcription factor E2f1 were also detected, suggesting induction of cell cycle progression at all tested doses of CTN. However, histopathological changes were found only in rats treated with the higher dose of CTN, which was consistent with increases in the mRNA expression levels of mitogenic factors associated with tissue damage/regeneration, such as Hgf and Lcn2, at the same dose. Thus, the proliferative effects of CTN may result not only from compensatory reactions, but also from direct mitogenic action. Western blot analysis showed that ERK phosphorylation was increased at all doses, implying that cell cycle progression may be mediated by activation of the ERK pathway. On the other hand, in vivo genotoxicity analyses were negative, implying that CTN did not have the potential for inducing DNA damage, gene mutations, or chromosomal aberrations. The overall data clearly demonstrated the molecular events underlying CTN-induced cell cycle progression, which could be helpful to understand CTN-induced renal carcinogenesis. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据