4.7 Article

Alterations in c-Src/HER1 and estrogen receptor α signaling pathways in mammary gland and tumors of hexachlorobenzene-treated rats

期刊

TOXICOLOGY
卷 293, 期 1-3, 页码 68-77

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2011.12.012

关键词

Hexachlorobenzene; Mammary gland; Tumor promotion; Estrogen receptor alpha; HER1; c-Src

向作者/读者索取更多资源

Hexachlorobenzene (HCB) is an organochlorine pesticide that acts as an endocrine disruptor in humans and rodents. The development of breast cancer strongly depends on endocrine conditions modulated by environmental factors. We have demonstrated that HCB is a tumor co-carcinogen in rats and an inducer of proliferation in MCF-7 cells, in an estrogen receptor alpha (ER alpha)-dependent manner, and of migration in MDA-MB-231 breast cancer cell line. In the present study, we examined HCB effect on c-Src/human epidermal growth factor receptor (HER1) and ER alpha signaling pathways in mammary glands and in N-nitroso-N-methylurea (NMU)-induced mammary tumors in rats. Furthermore, we evaluated histopathological changes and serum hormone levels. Rats were separated into four groups: control, HCB (100 mg/kg b.w.), NMU (50 mg/kg b.w.) and NMU-HCB. Our data show that HCB increases c-Src and HER1 activation, c-Src/HER1 association, and Y699-STAT5b and ERK1/2 phosphorylation in mammary glands. HCB also enhances Y537-ER alpha phosphorylation and ER alpha/c-Src physical interaction. In tumors, HCB also induces c-Src and HER1 activation, c-Src/HER1 association, as well as T308-Akt and Y699-STAT5b phosphorylation. In addition, the pesticide increases ER alpha protein content and decreases p-Y537-ER alpha levels and ER alpha/c-Src association in tumors. HCB increases serum 17-beta estradiol and prolactin contents and decreases progesterone, FSH and LH levels in rats without tumors, while the opposite effect was observed in rats with tumors. Taken together, our results indicate that HCB induces an estrogenic effect in mammary gland, increasing c-Src/HER1 and ER alpha signaling pathways. HCB stimulates c-Src/HER1 pathway, but decreases ER alpha activity in tumors, appearing to shift them towards a higher malignancy phenotype. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据