4.7 Article

Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling

期刊

TOXICOLOGY
卷 299, 期 1, 页码 55-59

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2012.05.013

关键词

Clioquinol; SMON; ATM; p53; Neurotoxicity

资金

  1. Health and Labor Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labor and Welfare of Japan

向作者/读者索取更多资源

Clioquinol, a Cu2+/Zn2+/Fe2+ chelator/ionophor, was used extensively in the mid 1900s as an amebicide for treating indigestion and diarrhea. It was eventually withdrawn from the market because of a link to subacute myelo-optic neuropathy (SMON) in Japan. The pathogenesis of SMON, however, is not fully understood. To clarify the molecular mechanisms of clioquinol-induced neurotoxicity, a global analysis using DNA chips was carried out on human neuroblastoma cells. The global analysis and quantitative PCR demonstrated that mRNA levels of p21(Cip1), an inhibitor of cyclins D and E, and of GADD45 alpha, a growth arrest and DNA damage-inducible protein, were significantly increased by clioquinol treatment in SH-SY5Y and IMR-32 neuroblastoma cells. Activation of p53 by clioquinol was suggested, since clioquinol induced phosphorylation of p53 at Ser15 to enhance its stabilization. The phosphorylation of p53 was inhibited by KU-55933, an inhibitor of ataxia-telangiectasia mutated kinase (ATM), but not by NU7026, an inhibitor of DNA-dependent protein kinase (DNA-PK). Clioquinol in fact induced phosphorylation of ATM and histone H2AX, a marker of DNA double-strand breaks (DSBs). These results suggest that clioquinol-induced neurotoxicity is mediated by DSBs and subsequent activation of ATM/p53 signaling. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据