4.5 Article

Normalization of Nano-Sized TiO2-Induced Clastogenicity, Genotoxicity and Mutagenicity by Chlorophyllin Administration in Mice Brain, Liver, and Bone Marrow Cells

期刊

TOXICOLOGICAL SCIENCES
卷 142, 期 1, 页码 21-32

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfu157

关键词

chlorophyllin; TiO2 nanoparticles; genotoxicity; mice

资金

  1. Faculty of Science Cairo University

向作者/读者索取更多资源

The intensive uses of titanium dioxide (TiO2) nanoparticles in sunscreens, toothpaste, sweats, medications, etc. making humans exposed to it daily by not little amounts and also increased its risks including genotoxicity. Thus, the present study was designed as one way to reduce nano-titanium-induced clastogenicity, genotoxicity, and mutagenicity in mice by co-administration of the free radical scavenger chlorophyllin (CHL). In addition, markers of oxidative stress were detected to shed more light on mechanism(s) underlying nano-sized TiO2 genotoxicity. Male mice were exposed to multiple injection into the abdominal cavity for five consecutive days with either CHL (40 mg/kg bw/day), or each of three dose levels of nano-sized TiO2 (500, 1000, or 2000 mg/kg bw/day) alone, or both simultaneously and sacrificed by cervical dislocation 24 h after the last treatment. After CHL co-administration, the observed dose-dependent genotoxicity of TiO2 nanoparticles indicated by the significant elevations in frequencies of both micronuclei and DNA damage induction was significantly decreased and returned to the negative control level. The observed induced mutations in p53 exons 5, 7, & 8 and 5 & 8 in the liver and brain, respectively, were declined in most cases. Moreover, CHL significantly decreased hepatic malondialdehyde level and significantly increased glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities that were significantly disrupted in animal groups treated with nano-TiO2 alone. In conclusion, the evidenced in vivo genotoxicity of nano-TiO2 in the present study was normalized after CHL co-administration which supports the previously suggested oxidative stress as the possible mechanism for titanium toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据