4.5 Article

Efficient Monitoring of In Vivo Pig-a Gene Mutation and Chromosomal Damage: Summary of 7 Published Studies and Results From 11 New Reference Compounds

期刊

TOXICOLOGICAL SCIENCES
卷 130, 期 2, 页码 328-348

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfs258

关键词

Pig-a gene; mutation; flow cytometry; micronuclei; genotoxicity; peripheral blood

资金

  1. National Institute of Health/National Institute of Environmental Health Sciences (NIEHS) [R44ES018017]

向作者/读者索取更多资源

The ability to effectively monitor gene mutation and micronucleated reticulocyte (MN-RET) frequency in short-term and repeated dosing schedules was investigated using the recently developed flow cytometric Pig-a mutation assay and flow cytometric micronucleus analysis. Eight reference genotoxicants and three presumed nongenotoxic compounds were studied: chlorambucil, melphalan, thiotepa, cyclophosphamide, azathioprine, 2-acetylaminofluorene, hydroxyurea, methyl methanesulfonate, o-anthranilic acid, sulfisoxazole, and sodium chloride. These experiments extend previously published results with seven other chemicals. Male Sprague Dawley rats were treated via gavage for 3 or 28 consecutive days with several dose levels of each chemical up to the maximum tolerated dose. Blood samples were collected at several time points up to day 45 and were analyzed for Pig-a mutation with a dual-labeling method that facilitates mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. An immunomagnetic separation technique was used to increase the efficiency of scoring mutant cells. Blood samples collected on day 4, and day 29 for the 28-day study, were evaluated for MN-RET frequency. The three nongenotoxicants did not induce Pig-a or MN-RET responses. All genotoxicants except hydroxyurea increased the frequency of Pig-a mutant reticulocytes and erythrocytes. Significant increases in MN-RET frequency were observed for each of the genotoxicants at both time points. Whereas the highest Pig-a responses tended to occur in the 28-day studies, when total dose was greatest, the highest induction of MN-RET was observed in the 3-day studies, when dose per day was greatest. There was no clear relationship between the maximal Pig-a response of a given chemical and its corresponding maximal MN-RET response, despite the fact that both endpoints were determined in the same cell lineage. Taken with other previously published results, these data demonstrate the value of integrating Pig-a and micronucleus endpoints into in vivo toxicology studies, thereby providing information about mutagenesis and chromosomal damage in the same animals from which toxicity, toxicokinetics, and metabolism data are obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据