4.5 Article

ERK Crosstalks with 4EBP1 to Activate Cyclin D1 Translation during Quinol-Thioether-Induced Tuberous Sclerosis Renal Cell Carcinoma

期刊

TOXICOLOGICAL SCIENCES
卷 124, 期 1, 页码 75-87

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfr203

关键词

Raf-1; phosphorylation; MAPK; renal cell carcinoma; quinol-thioether

资金

  1. National Institutes of Health [GM039338]
  2. National Institute of Environmental Health Science, National Institutes of Health [P30ES006694, T32ES007091]

向作者/读者索取更多资源

The mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase signaling cascades have been implicated in a number of human cancers. The tumor suppressor gene tuberous sclerosis-2 (Tsc-2) functions as a negative regulator of mTOR. Critical proteins in both pathways are activated following treatment of Eker rats (Tsc-2(EK/+)) with the nephrocarcinogen 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ), which also results in loss of the wild-type allele of Tsc-2 in renal preneoplastic lesions and tumors. Western blot analysis of kidney tumors formed following treatment of Tsc-2(EK/+) rats with TGHQ for 8 months revealed increases in B-Raf, Raf-1, pERK, cyclin D1, 4EBP1, and p-4EBP1-Ser65, -Thr70, and -Thr37/46 expression. Similar changes are observed following TGHQ-mediated transformation of primary renal epithelial cells derived from Tsc-2(EK/+) rats (quinol-thioether rat renal epithelial [QTRRE] cells) that are also null for tuberin. These cells exhibit high ERK, B-Raf, and Raf-1 kinase activity and increased expression of all p-4EBP1s and cyclin D1. Treatment of the QTRRE cells with the Raf kinase inhibitor, sorafenib, or the MEK1/2 kinase inhibitor, PD 98059, produced a significant decrease in the protein expression of all p-4EBP1s and cyclin D1. Following siRNA knockdown of Raf-1, Western blot analysis revealed a significant decrease in Raf-1, cyclin D1, and all p-4EBP1 forms noted above. In contrast, siRNA knockdown of B-Raf resulted in a nominal change in these proteins. The data indicate that Raf-1/MEK/ERK participates in crosstalk with 4EBP1, which represents a novel pathway interaction leading to increased protein synthesis, cell growth, and kidney tumor formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据