4.5 Article

Radical Mechanisms in Nitrosamine- and Nitrosamide-Induced Whole-Genome Gene Expression Modulations in Caco-2 Cells

期刊

TOXICOLOGICAL SCIENCES
卷 116, 期 1, 页码 194-205

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfq121

关键词

nitrosamines; nitrosamides; N-nitroso compounds; free radicals; toxicogenomics; colon carcinogenesis

向作者/读者索取更多资源

N-nitroso compounds (NOCs) may be implicated in human colon carcinogenesis, but the toxicological mechanisms involved have not been elucidated. Because it was previously demonstrated that nitrosamines and nitrosamides, representing two classes of NOC, induce distinct gene expression effects in colon cells that are particularly related to oxidative stress, we hypothesized that different radical mechanisms are involved. Using electron spin resonance spectroscopy, we investigated the radical-generating properties of genotoxic NOC concentrations in human colon adenocarcinoma cells (Caco-2). Cells were exposed to nitrosamides (N-methyl-N'-nitrosoguanidine and N-methyl-N-nitrosourea) or nitrosamines (N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosopiperidine, and N-nitrosopyrrolidine). Nitrosamines caused formation of reactive oxygen species (ROS) and carbon-centered radicals, which was further stimulated in the presence of Caco-2 cells. N-methyl-N-nitrosourea exposure resulted in a small ROS signal, and formation of nitrogen-centered radicals (NCRs), also stimulated by Caco-2 cells. N-methyl-N'-nitro-N-nitrosoguanidine did not cause radical formation at genotoxic concentrations, but at increased exposure levels, both ROS and NCR formation was observed. By associating gene expression patterns with ROS formation, several cellular processes responding to nitrosamine exposure were identified, including apoptosis, cell cycle blockage, DNA repair, and oxidative stress. These findings suggest that following NOC exposure in Caco-2 cells, ROS formation plays an important role in deregulation of gene expression patterns that may be relevant for the process of chemical carcinogenesis in the human colon, in addition to the role of DNA alkylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据