4.5 Article

Formaldehyde: Integrating Dosimetry, Cytotoxicity, and Genomics to Understand Dose-Dependent Transitions for an Endogenous Compound

期刊

TOXICOLOGICAL SCIENCES
卷 118, 期 2, 页码 716-731

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfq303

关键词

formaldehyde; genomics in risk assessment; dose-dependent transitions; endogenous compound toxicity; gene categories

资金

  1. Formaldehyde Council
  2. Long Range Research Initiative of the American Chemistry Council

向作者/读者索取更多资源

Formaldehyde (FA), an endogenous cellular aldehyde, is a rat nasal carcinogen. In this study, concentration and exposure duration transitions in FA mode of action (MOA) were examined with pharmacokinetic (PK) modeling for tissue formaldehyde acetal (FAcetal) and glutathione (GSH) and with histopathology and gene expression in nasal epithelium from rats exposed to 0, 0.7, 2, 6, 10, or 15 ppm FA 6 h/day for 1, 4, or 13 weeks. Patterns of gene expression varied with concentration and duration. At 2 ppm, sensitive response genes (SRGs)-associated with cellular stress, thiol transport/reduction, inflammation, and cell proliferation-were upregulated at all exposure durations. At 6 ppm and greater, gene expression changes showed enrichment of pathways involved in cell cycle, DNA repair, and apoptosis. ERBB, EGFR, WNT, TGF-beta, Hedgehog, and Notch signaling were also enriched. Benchmark doses for significantly enriched pathways were lowest at 13 weeks. Transcriptional and histological changes at 6 ppm and greater corresponded to dose ranges in which the PK model predicted significant reductions in free GSH and increases in FAcetal. Genomic changes at 0.7-2 ppm likely represent changes in extracellular FAcetal and GSH. DNA replication stress, enhanced proliferation, squamous metaplasia, and stem cell niche activation appear to be associated with FA carcinogenesis. Dose dependencies in MOA, high background FAcetal, and nonlinear FAcetal/GSH tissue kinetics indicate that FA concentrations below 1 or 2 ppm would not increase risk of cancer in the nose or any other tissue or affect FA homeostasis within epithelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据