4.5 Article

Maternal blood glucose levels determine the severity of diabetic embryopathy in mice with different expression of copper-zinc superoxide dismutase (CuZnSOD)

期刊

TOXICOLOGICAL SCIENCES
卷 105, 期 1, 页码 166-172

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfn101

关键词

CuZnSOD; transgenic mice; knockout mice; oxidative stress; alloxan; diabetes in pregnancy

向作者/读者索取更多资源

Excess oxygen radical formation is suggested to be involved in the etiology of diabetic embryopathy. We aimed to investigate the effects of altered maternal antioxidative status in conjunction with a varied severity of the maternal diabetic state on embryonic development by using mice with different gene expression of CuZn superoxide dismutase (CuZnSOD). The mice were wild-type (WT), transgenic (TG), or knockout (KO) with regard to CuZnSOD. Alloxan was used to induce diabetes (DWT, DTG, DKO) in female mice before pregnancy and, noninjected mice served as controls (NWT, NTG, NKO). The minimum alloxan dose required to induce diabetes was 80 mg/kg for WT, 100 mg/kg for TG, and 65 mg/kg for KO mice. When KO mice were made diabetic with 80 mg/kg alloxan, they produced no living offspring. The pregnancies were interrupted on gestational day 18, when maternal diabetic state, that is, blood glucose concentration, as well as fetal outcome, genotype and hepatic isoprostane levels were assessed. The mean maternal blood glucose levels were positively associated with the alloxan dose, that is, the DWT and DTG groups had higher blood glucose concentration than the DKO group, and the DWT and DTG fetuses increased their hepatic isoprostane levels, whereas the DKO fetuses did not. However, in all diabetic groups, increased maternal blood glucose concentration was associated with higher resorption and malformation rates as well as lowered fetal and placental weight. Furthermore, diabetes increased the fraction of WT offspring in the TG and KO groups. We conclude that both fetal antioxidative capacity and maternal diabetic state affect the development of the offspring. However, the maternal diabetic state is the major teratogenic factor and overrides the influence of fetal antioxidative capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据