4.0 Article

Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic Acid-induced Mesial Temporal Lobe Epilepsy

期刊

TOXICOLOGIC PATHOLOGY
卷 36, 期 7, 页码 932-943

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0192623308326093

关键词

mesial temporal lobe epilepsy (MTLE); Fischer-344 rat; animal model; histopathology; lesions; neurodegeneration; microgliosis; astrogliosis; mossy fiber sprouting; neurogenesis

向作者/读者索取更多资源

Since there is limited information in the literature, the purpose of this study was to investigate clinical signs, morphology, and temporal progression of lesions from Days 3 to 168 in a kainic acid (KA)-induced Fischer-344 (F-344) rat model of mesial temporal lobe epilepsy (MTLE). Following a single KA subcutaneous dose of 9 mg/kg to young adult male rats, 95% survived, 93% exhibited status epilepticus, and 80% eventually developed spontaneous motor seizures. Histopathology included hematoxylin and eosin (H&E), autofluorescence, Fluoro-Jade B, Timm's, ED-1/CD68, GFAP, doublecortin, and Ki-67. Neuronal degeneration occurred on Day 3 in the hippocampal CA1, CA3, and dentate hilar regions; amygdaloid and thalamic nuclei; and frontoparietotemporal, entorhinal and piriform cortices. Degeneration severity peaked on Day 6 and decreased progressively until Day 168. Aberrant mossy fiber (MF) sprouting was present in the inner molecular layer of dentate gyrus on Days 6-168. Microliosis and astrogliosis peaked on Day 28 and generally colocalized with the distribution of neuronal degeneration. Important correlates to human MTLE included induction of spontaneous seizures, more severe neuronal damage of CA1 than CA3 (in contrast to other animal models but similar to humans), hilar neuronal loss, activated microgliosis and astrogliosis, aberrant MF sprouting, and dentate granule cell neurogenesis. Aberrant MF sprouting prior to spontaneous motor seizures and reduced seizure frequency with a decrease in aberrant MF sprouting support the hypothesis that MF sprouts are necessary for spontaneous seizure generation and maintenance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据