4.6 Article

Cell Cycle Control by a Minimal Cdk Network

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 11, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1004056

关键词

-

资金

  1. Foundation Philippe Wiener - Maurice Anspach
  2. NIH [5R01-GM078989-07]
  3. ERC under the European Union [310849]
  4. EC [MitoSys - 241548]
  5. European Research Council (ERC) [310849] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据