4.1 Article

Microfluidic Approach to Create Three-Dimensional Tissue Models for Biofilm-Related Infection of Orthopaedic Implants

期刊

TISSUE ENGINEERING PART C-METHODS
卷 17, 期 1, 页码 39-48

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2010.0285

关键词

-

资金

  1. National Science Foundation [NIRT-CBET 0708379]

向作者/读者索取更多资源

With conventional in vitro culture methods, it is difficult to study complex interactions of host cells with pathogens and drugs in physiologically relevant microenvironments. To simulate orthopaedic implant-associated infection, a multi-channel microfluidic device was used to (1) observe in real-time the development of osteoblasts into three-dimensional (3D) tissue-like structures and (2) study how this development was influenced by phenotypes of Staphylococcus epidermidis. In the absence of bacteria, osteoblasts formed a confluent layer on the bottom channel surface, gradually migrated to the side and top surfaces, and formed calcified 3D nodular structures in 8 days. The delivery timing and concentration of an antibiotic were controlled to produce small colony variants, sessile biofilms, or dead cells of S. epidermidis. In the presence of the small colony variants, osteoblasts initially adhered, and spread, but were killed within 2 days. In contrast, the sessile biofilms and dead bacteria cells did not significantly interfere with the formation of tissue-like structures. The results suggest the possibility of creating in vitro tissue-biofilm-biomaterial interfaces and therefore 3D tissue models, as an entirely new method of studying biofilm-related infection of orthopaedic implants with physiological relevance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据