4.1 Article

Long-Term Spatially Defined Coculture Within Three-Dimensional Photopatterned Hydrogels

期刊

TISSUE ENGINEERING PART C-METHODS
卷 16, 期 6, 页码 1621-1628

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2010.0146

关键词

-

资金

  1. Aircast Foundation
  2. NIH [1R21EB009153]

向作者/读者索取更多资源

Spatially controlled coculture in three-dimensional environments that appropriately mimic in vivo tissue architecture is a highly desirable goal in basic scientific studies of stem cell physiological processes (e. g., proliferation, matrix production, and tissue repair) and in enhancing the development of novel stem-cell-based clinical therapies for a variety of ailments. This study describes a novel fabrication system for photopatterning and assembling cell-laden oligo(polyethylene glycol)-fumarate: poly(ethylene glycol)-diacrylate hydrogels with high spatial fidelity and thickness using a controlled, inert nitrogen environment without the need for expensive precision equipment. Cross-linking was performed using Irgacure-2959 photoinitiator and 365-nm light (similar to 7 mW/cm(2)) to form gels ranging from 0.9 to 3mm in width. Employing a nitrogen environment increased gel thickness up to 240%, generating gels >1 mm thick before swelling. This technique was further applied for spatially controlled patterning of primary tendon/ligament fibroblasts and marrow stromal cells in a single 1.5-mm-thick laminated hydrogel construct. Cells encapsulated using this technique maintained viability over 14 days in culture. This system potentially enables better understanding of paracrine effects on a range of stem cell functions and therefore may be useful as an in vitro model system for a wide array of regenerative medicine applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据