4.4 Article

Cytoskeletal and Focal Adhesion Influences on Mesenchymal Stem Cell Shape, Mechanical Properties, and Differentiation Down Osteogenic, Adipogenic, and Chondrogenic Pathways

期刊

TISSUE ENGINEERING PART B-REVIEWS
卷 18, 期 6, 页码 436-444

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.teb.2012.0014

关键词

-

资金

  1. NIH/NIBIB [R03EB008790]
  2. NC TraCS [10KR51023]
  3. NSF/CBET [1133427]
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1133427] Funding Source: National Science Foundation

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) hold great potential for regenerative medicine and tissue-engineering applications. They have multipotent differentiation capabilities and have been shown to differentiate down various lineages, including osteoblasts, adipocytes, chondrocytes, myocytes, and possibly neurons. The majority of approaches to control the MSC fate have been via the use of chemical factors in the form of growth factors within the culture medium. More recently, it has been understood that mechanical forces play a significant role in regulating MSC fate. We and others have shown that mechanical stimuli can control MSC lineage specification. The cytoskeleton is known to play a large role in mechanotransduction, and a growing number of studies are showing that it can also contribute to MSC differentiation. This review analyzes the significant contribution of actin and integrin distribution, and the smaller role of microtubules, in regulating MSC fate. Osteogenic differentiation is more prevalent in MSCs with a stiff, spread actin cytoskeleton and greater numbers of focal adhesions. Both adipogenic differentiation and chondrogenic differentiation are encouraged when MSCs have a spherical morphology associated with a dispersed actin cytoskeleton with few focal adhesions. Different mechanical stimuli can be implemented to alter these cytoskeletal patterns and encourage MSC differentiation to the desired lineage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据