4.4 Article

Elastin as a Nonthrombogenic Biomaterial

向作者/读者索取更多资源

Surface-induced thrombosis is a significant issue for artificial blood-contacting materials used in the treatment of cardiovascular diseases. The development of biomaterials and tissue-engineered constructs that mimic the vasculature represents a way to overcome this problem. Elastin is an extracellular matrix macromolecule that imparts arterial elasticity where it comprises up to 50% of the nonhydrated mass of the vessel. In addition to its critical role in maintaining vessel integrity and elastic properties under pulsatile flow, elastin plays an important role in signaling and regulating luminal endothelial cells and smooth muscle cells in the arterial wall. Despite its well-established significance in the vasculature and its growing use as a biomaterial in tissue engineering, the hemocompatibility of elastin is often overlooked. Past studies pointing to the potential of arterial elastin and decellularized elastin as nonthrombogenic materials have begun to be realized, with elastin scaffolds and coatings displaying increased hemo-comptibility. This review explores the mechanisms of elastin's nonthrombogenicity and highlights the current problems limiting its wider application as a biomaterial. We discuss the benefits of constructing biomaterials encompassing the relevant mechanical and biological features of elastin to provide enhanced hemocompatibility to biomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据