4.2 Article

Utilizing Core-Shell Fibrous Collagen-Alginate Hydrogel Cell Delivery System for Bone Tissue Engineering

期刊

TISSUE ENGINEERING PART A
卷 20, 期 1-2, 页码 103-114

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2013.0198

关键词

-

资金

  1. Priority Research Centers Program through the National Research Foundation (NRF) - Ministry of Education, Science and Technology, South Korea [2009-0093829]

向作者/读者索取更多资源

Three-dimensional matrices that encapsulate and deliver stem cells with defect-tuned formulations are promising for bone tissue engineering. In this study, we designed a novel stem cell delivery system composed of collagen and alginate as the core and shell, respectively. Mesenchymal stem cells (MSCs) were loaded into the collagen solution and then deposited directly into a fibrous structure while simultaneously sheathing with alginate using a newly designed core-shell nozzle. Alginate encapsulation was achieved by the crosslinking within an adjusted calcium-containing solution that effectively preserved the continuous fibrous structure of the inner cell-collagen part. The constructed hydrogel carriers showed a continuous fiber with a diameter of similar to 700-1000 mu m for the core and 200-500 mu m for the shell area, which was largely dependent on the alginate concentration (2%-5%) as well as the injection rate (20-80 mL/h). The water uptake capacity of the core-shell carriers was as high as 98%, which could act as a pore channel to supply nutrients and oxygen to the cells. Degradation of the scaffolds showed a weight loss of similar to 22% at 7 days and similar to 43% at 14 days, suggesting a possible role as a degradable tissue-engineered construct. The MSCs encapsulated within the collagen core showed excellent viability, exhibiting significant cellular proliferation up to 21 days with levels comparable to those observed in the pure collagen gel matrix used as a control. A live/dead cell assay also confirmed similar percentages of live cells within the core-shell carrier compared to those in the pure collagen gel, suggesting the carrier was cell compatible and was effective for maintaining a cell population. Cells allowed to differentiate under osteogenic conditions expressed high levels of bone-related genes, including osteocalcin, bone sialoprotein, and osteopontin. Further, when the core-shell fibrous carriers were implanted in a rat calvarium defect, the bone healing was significantly improved when the MSCs were encapsulated, and even more so after an osteogenic induction of MSCs before implantation. Based on these results, the newly designed core-shell collagen-alginate fibrous carrier is considered promising to enable the encapsulation of tissue cells and their delivery into damaged target tissues, including bone with defect-tunability for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据