4.2 Article

Chondrocyte Migration Affects Tissue-Engineered Cartilage Integration by Activating the Signal Transduction Pathways Involving Src, PLCγ1, and ERK1/2

期刊

TISSUE ENGINEERING PART A
卷 19, 期 21-22, 页码 2506-2516

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2012.0614

关键词

-

向作者/读者索取更多资源

To determine the signal transduction pathways involved in chondrocyte migration and their effects on cartilage integration in autologous chondrocyte implantation. Articular chondrocytes were divided into three inhibitor groups pretreated with different inhibitors to Src, phospholipase C1 (PLC1), and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and one control group pretreated with vehicle. The effect of these pathways on chondrocyte migration was first explored by Boyden chamber assay, and then by an in vitro cell/ring integration model. Chondrocyte migration was visualized and quantified by cell tracking, and the activity of Src, PLC1, and ERK1/2 was determined by Western blotting. The effect of these pathways on cartilage integration was evaluated histologically, biochemically, and biomechanically. Boyden chamber assay revealed that the number of migrated cells was significantly increased in the control group without inhibitors. In an in vitro integration model, the implanted chondrocytes were observed to migrate through the interface and infiltrate into the native cartilage. Additionally, chondrocyte migration could be improved in the absence of inhibitors After 4 weeks of culture, the control group demonstrated a significantly higher cellularity, larger amount of chemical content deposition, stronger extracellular matrix staining in the integration zone, and higher integrative strength as compared to the inhibitor groups. Western blotting demonstrated that the Src-PLC1-ERK1/2 signaling pathway was promoted in the integration process. This study is the first to show that the Src-PLC1-ERK1/2 signaling transduction pathway is involved in cartilage tissue integration by affecting chondrocyte migration. Our results raise the importance of the chondrocyte migration enhancement therapy or the development of new agents specifically targeting the pathways to ensure long-term functionality of the restored joint surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据